derivation trees - определение. Что такое derivation trees
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое derivation trees - определение

FUNCTION ON AN ALGEBRA WHICH GENERALIZES CERTAIN FEATURES OF DERIVATIVE OPERATOR
Antiderivation; Derivation (algebra); Superderivation; Anti-derivation; Homogeneous derivation; Derivation (abstract algebra); Derivation of an algebra

Morphological derivation         
IN LINGUISTICS, THE PROCESS OF FORMING A NEW WORD ON THE BASIS OF AN EXISTING ONE
Derivation(linguistics); Derivative (linguistics); Derivational morphology; Derivational Morphology; Derivational affix; Derivational rule; Derivation (linguistics)
Morphological derivation, in linguistics, is the process of forming a new word from an existing word, often by adding a prefix or suffix, such as For example, unhappy and happiness derive from the root word happy.
Derivation (differential algebra)         
In mathematics, a derivation is a function on an algebra which generalizes certain features of the derivative operator. Specifically, given an algebra A over a ring or a field K, a K-derivation is a K-linear map that satisfies Leibniz's law:
Trees of New York City         
  • 133x133px
  • 133x133px
  • 133x133px
  • 133x133px
  • 133x133px
TREES OF NYC
Trees in nyc; Trees in NYC; Nyc trees; Ny trees; Trees in New York City; Tree of Hope
The land comprising New York City holds approximately 5.2 million trees and 168 different tree species, as of 2020.

Википедия

Derivation (differential algebra)

In mathematics, a derivation is a function on an algebra which generalizes certain features of the derivative operator. Specifically, given an algebra A over a ring or a field K, a K-derivation is a K-linear map D : AA that satisfies Leibniz's law:

D ( a b ) = a D ( b ) + D ( a ) b . {\displaystyle D(ab)=aD(b)+D(a)b.}

More generally, if M is an A-bimodule, a K-linear map D : AM that satisfies the Leibniz law is also called a derivation. The collection of all K-derivations of A to itself is denoted by DerK(A). The collection of K-derivations of A into an A-module M is denoted by DerK(A, M).

Derivations occur in many different contexts in diverse areas of mathematics. The partial derivative with respect to a variable is an R-derivation on the algebra of real-valued differentiable functions on Rn. The Lie derivative with respect to a vector field is an R-derivation on the algebra of differentiable functions on a differentiable manifold; more generally it is a derivation on the tensor algebra of a manifold. It follows that the adjoint representation of a Lie algebra is a derivation on that algebra. The Pincherle derivative is an example of a derivation in abstract algebra. If the algebra A is noncommutative, then the commutator with respect to an element of the algebra A defines a linear endomorphism of A to itself, which is a derivation over K. That is,

[ F G , N ] = [ F , N ] G + F [ G , N ] {\displaystyle [FG,N]=[F,N]G+F[G,N]}

where [ , N ] {\displaystyle [\cdot ,N]} is the commutator with respect to N {\displaystyle N} . An algebra A equipped with a distinguished derivation d forms a differential algebra, and is itself a significant object of study in areas such as differential Galois theory.